Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272.
نویسندگان
چکیده
BACKGROUND By the formation of cGMP, nitric oxide (NO)-sensitive guanylyl cyclase (GC) acts as the effector for the signaling molecule NO and mediates the relaxation of vascular smooth muscle and the inhibition of platelet aggregation. The compounds YC-1 and BAY 41-2272 are regarded as NO-independent activators and sensitizers of NO-sensitive GC. In vivo effects, for example, lowering blood pressure and prolonging tail-bleeding times, turn the compounds into promising candidates for the therapy of cardiovascular diseases. However, YC-1 has also been shown to inhibit the major cGMP-degrading enzyme phosphodiesterase type 5 (PDE5). The synergistic properties of YC-1 on cGMP formation and degradation lead to an excessive NO-induced cGMP accumulation in cells, explaining the observed physiological effects. We assessed a potential inhibition of PDE5 by the new GC activator BAY 41-2272. METHODS AND RESULTS The effects of BAY 41-2272 on NO-sensitive GC and PDE5 activities were tested in vitro. BAY 41-2272 not only sensitized NO-sensitive GC toward activation by NO but also, with comparable potency, inhibited cGMP degradation by PDE5. In intact platelets, BAY 41-2272 greatly potentiated the NO-induced cGMP response that was caused by a synergistic effect of BAY 41-2272 on cGMP formation and degradation. CONCLUSIONS The physiological effects of BAY 41-2272, which are commonly ascribed to the NO-independent activation of NO-sensitive GC, are rather due to the synergism of sensitization of NO-sensitive GC and inhibition of PDE5.
منابع مشابه
Beneficial effect of the soluble guanylyl cyclase stimulator BAY 41-2272 on impaired penile erection in db/db-/- type II diabetic and obese mice.
Type 2 diabetes mellitus (DM2) and obesity are major risk factors for erectile dysfunction (ED). In diabetes, increased oxidative stress leads to decreased nitric oxide (NO) bioavailability, and diabetic patients appear to be less responsive to conventional therapy with phosphodiesterase type 5 inhibitors. We investigated whether the soluble guanylyl cyclase stimulator BAY 41-2272 (5-cyclopropy...
متن کاملVasorelaxing effect of BAY 41-2272 in rat basilar artery: involvement of cGMP-dependent and independent mechanisms.
Decreases in intrinsic NO cause cerebral vasospasms because of the dysregulation of cGMP formation by NO-mediated pathways. Because 5-cyclopropyl-2-{1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl}pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase (sGC) stimulator in an NO-independent manner, this study aimed to investigate the mechanisms underlying the relaxant effects of...
متن کاملEffects of BAY 41-2272, a soluble guanylate cyclase activator, on pulmonary vascular reactivity in the ovine fetus.
Nitric oxide (NO)-cGMP signaling plays a critical role during the transition of the pulmonary circulation at birth. BAY 41-2272 is a novel NO-independent direct stimulator of soluble guanylate cyclase that causes vasodilation in systemic and local circulations. However, the hemodynamic effects of BAY 41-2272 have not been studied in the perinatal pulmonary circulation. We hypothesized that BAY ...
متن کاملNovel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury.
The protective effects of nitric oxide (NO), a physiological activator of soluble guanylyl cyclase (sGC), have been reported in ischemia-reperfusion (I/R) syndrome of the lung. Therefore, we studied the effects of BAY 41-2272, a novel sGC stimulator, on I/R injury of the lung in an isolated intact organ model. Lung injury was assessed by measuring weight gain and microvascular permeability (cap...
متن کاملEffects of 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272) on smooth muscle tone, soluble guanylyl cyclase activity, and NADPH oxidase activity/expression in corpus cavernosum from wild-type, neuronal, and endothelial nitric-oxide synthase null mice.
We aimed to characterize the relaxation induced by the soluble guanylyl cyclase (sGC) stimulator 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and its pharmacological interactions with nitric oxide (NO) in the corpus cavernosum (CC) from wild-type (WT), endothelial nitric-oxide synthase (eNOS)(-/-), and neuronal (n)NOS(-/-) mice. The effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 109 14 شماره
صفحات -
تاریخ انتشار 2004